
International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                               540 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org 

Query Execution and Effect of Compression on 
NoSQL Column Oriented Data-store Using 

Hadoop and HBase 
Priyanka Raichand, Rinkle Rani 

 

Abstract— Column oriented data-stores has all values of a single column stored as a row followed by all values of the next column. Such way of stor-

ing records helps in data compression since values of the same column are of the similar type and may repeat. Intend of the paper is to see and 

analysize the effect of compression on NoSQL column oriented data-store. To perform this work, HBase - a Hadoop database was chosen. It is one of 

the most prominent NoSQL column oriented datastore and is being used by big companies like Facebook. Effect of compression and analysis has been 

performed with three compression codecs, Snappy, LZO and GZIP using only human readable text data. Hadoop Map Reduce framework has been 

used for loading the bulk data. Performance evaluation on compressed and uncompressed tables has been done by executing queries using advanced 

HBase API. Results shows that using compression in NoSQL column oriented data-store like HBase increases the performance of the system overall. 

Snappy performs consistently well in saving CPU and network and memory usage. Second runner up is LZO. Whereas GZIP is not optimal choice 

where speed and memory usage is main concern but can work perfectly well where size disk space is a constraint. 

 

Index Terms— Column oriented data-store, Compression, Gzip, Hadoop, HBase, NoSQL, LZO, Snappy.  

——————————      —————————— 

1 INTRODUCTION                                                                     
oday everyone is connected over the Internet and look to 
find relevant results instantaneously. Applications are 
undergoing transition from the traditional enterprise in-

frastructures to cloud infrastructures. With the development 
of the Internet and cloud computing, there is demand for high 
performance when reading and writing and to store and pro-
cess big data effectively. Planet size web applications like 
Google, eBay, Facebook, Amazon etc. are a relatively recent 
development in the realm of computing and technology, re-
quiring large scale to support hundreds of millions of concur-
rent users. Facebook, for example, adds more than 15 TB of 
data into its Hadoop cluster every day and is subsequently 
processing it all [1]. These applications are distributed across 
multiple clusters. These clusters consist of hundreds of server 
nodes that are located in multiple, geographically dispersed 
data centers. Data sizes in data-stores have been ever increas-
ing.  

In efficiently managing and analyzing unprecedented sheer 
amount of data, scalable database management system plays 
an important role. In large scale and high concurrency applica-
tions using the traditional relational database to store and que-
ry dynamic user data have come out to be inadequate. In 
comparison to RDBMSs, NoSQL databases are more powerful 
and attractive in addressing this challenge [2]. 

 
———————————————— 

• Priyanka Raichand is currently pursuing masters degree program in computer 
science and engineering in Thapar University, India, E-mail: 
raichand.priyanka@gmail.com 

• Rinkle Rani  is assistant professor in Thapar University,India, E-mail: 
ragarwal@thapar.edu 

 
 
Increased networking and business demands directly in-

creases the cost of resources needed in terms of space and 
network utilization. To store terabytes of data, especially of 
the type human-readable text, it is beneficial to compress the 
data to gain significant savings in required raw storage. Com-
pression techniques have not been considerably used in tradi-
tional relational database systems. The exchange between time 
and space for compression is not much pleasing for relational 
databases. NoSQL datastores were developed to deal with 
large scale needs and storage capacity. NoSQL community 
describes the acronym as “Not Only SQL”. HBase is one of the 
most prominent NoSQL column oriented datastore. It is Ha-
doop database. HBase is not a column-oriented database in the 
typical RDBMS sense, but it utilizes an on-disk column storage 
format because HBase stores data on disk in a column-
oriented format [1]. Storing data in columns introduce a num-
ber of possibilities for better performance from compression 
algorithms. Column- oriented databases save the data by 
grouping in columns. Column values are stored consecutively 
on disk in contrast to row- oriented approach of databases 
which store entire rows contiguously [3]. Column oriented 
data-stores has all values of a single column stored as a row 
followed by all values of the next column. Such way of storing 
records helps in data compression since values of the same 
column are of the similar type and may repeat.  

In this paper, effect and analysis of compression techniques 
is done using query execution on NoSQL column oriented 
datastore HBase. In next section, data model of HBase is 

T IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                               541 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org 

briefly explained. Section 3 answers the basic questions that 
why compression is needed and what are the various data 
compressing codecs well suited for HBase. Section 4, contains 
the implementation part. Section 5 layouts the analysis that 
has been taken out on the basis of query execution. 
Conclusions and future scope is offered in Section 6.  

2   HBASE- DATA MODEL 
HBase [3] is a distributed, persistent, strictly consistent, sparse, 
open source storage system. It is multidimensional-sorted map 
that is indexed by rowkey, columnkey, and timestamp. HBase 
maintains maps of Keys to Values (key → value). Each of these 
mappings is called a KeyValue or a Cell. The key sorts these 
cells. It is quite important property as it allows for searching 
rather than just retrieving a value for a known key. It is 
multidimensional means that the key itself has structure. Each 
Key has following parts –row-key, column family, column, and 
time-stamp. So the mapping takes place actually like (rowkey, 
column family, column, timestamp) → value. All data values 
in HBase are stored in form of bytes array. One attractive 
feature of HBase is that it is distributed. The data can be 
spread over 100s or 1000s of machines and HBase manages the 
load balancing automatically. HBase do load shifting 
gracefully and transparently to the clients. We can define in 
brief the basic constructs of HBase data model as follows and 
fig1. displays the same: 

Fig1: HBase Logical Data Model 
A. Table: Applications data is stored into an HBase table. 
Tables are made of rows and columns. The intersection of 
row and column coordinates known, as cells are versioned. 
B. Cell Value: A {row, column, and version} tuple precisely 
specifies a cell in HBase. Number of cells can exist with 
same row and column but differing only in its version 
dimension. A version is a long integer. While searching or 
reading from the store file the most recent values are found 
first as version dimension is stored in decreasing order. 

C. Row Key: The rowkey is defined by the application. 
Rows are lexicographically sorted with the lowest order 
appearing first in a table. The rowkey also provides a 
logical grouping of cells. All table accesses are via the table 
row key — it is primary key. 
D. Columns & Column Families: Columns families in 
HBase are group of columns. Columns are known as 
column qualifiers. Column family and column qualifier 
together makes column key.   

HBase provides Bigtable [4] like capabilities on top of Hadoop 
and HDFS. HBase uses many filesystem like local (for stand 
alone mode), S3, HDFS and other. But mainly for HBase HDFS 
is the best filesystem, as it has all the required features since 
HDFS takes full advantage of Map Reduce parallel, streaming 
access support. HBase is capable of storing structured and 
semistructured data. HBase make use of existing system, like 
HDFS and ZooKeeper, but also adds its own layers to form a 
complete platform.  

3 WHY COMPRESSION AND COMPRESSION CODECS 

This section concisely describes the need of compression in 
HBase and then the various compression codecs available. File 
compression results in two major benefits: it reduces the space 
needed to store files, and it also speeds up data transfer rate 
across the network, or to or from disk. Both of these savings 
can be significant, when dealing with large volumes of data. 
Using some form of compression for storing data lead to an 
increase in IO performance.  Hadoop workloads are generally 
data-intensive, so making the data reads a bottleneck in 
overall application performance. By using compression we 
reduce the size of our data achieving faster reads. It is simply 
trading I/O load for CPU load as we need to uncompress that 
data too so we use some CPU cycles. Also if the infrastructure 
lack on disk capacity and has no problems in performance it 
becomes logical to use an algorithm that gives huge 
compression ratios. Large volume of disks are very cheaper 
than fast storage solutions so it is better that compression 
algorithm must be faster than being able to give higher 
compression ratios.  
 
3.2 Compression in HBase 
HBase has near-optimal write and brilliant read performance, 
and it uses the disk space efficiently by supporting pluggable 
compression algorithms that can be selected based on the 
nature of the data in specific column families. In HBase the 
data is stored in store files, called Hfiles. Hfiles can be 
compressed and are stored on HDFS. It helps saving disk I/O 
and instead paying with a higher CPU utilization for 
compression and decompression while writing/reading data. 
All compression algorithms exhibit a space/time trade-off 
means faster compression and decompression speeds usually 
come at the expense of smaller space savings [5]. Compression 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                               542 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org 

is defined as part of the table definition, enabled at the column 
family level, which is given at the time of table creation or at 
the time of a schema change. 
It can be outlined that why compression is important as 
follows: 

• Compression reduces the number of bytes written 
to/read from HDFS.     

• Saves disk usage. 
• Improves the efficiency of network bandwidth when 

getting data from a remote server. 
  
3.2 Compression Codecs in HBase 
Various compression codecs are available to be used with 
HBase, mainly LZO, Snappy and GZIP. Following is the brief 
introduction of all the three codecs. Table 1.1 shows 
compression algorithm comparison in as Google published in 
2005. 
LZO: Lempel-Ziv-Oberhumer (LZO) [6] is a lossless data 

compression algorithm. It is focused on fast data 
decompression and low CPU usage, and written in ANSI 
C. HBase is not shiped with LZO because of licensing 
issues, HBase uses the Apache License, while LZO is using 
the incompatible GNU General Public License (GPL).By 
adding LZO compression support, HBase StoreFiles 
(Hfiles) uses LZO compression on blocks as they are 
written. HBase uses the native LZO library to perform the 
compression, while the native library is loaded by HBase 
via the hadoop-LZO Java library. Hadoop-LZO library 
brings splittable LZO compression to Hadoop [7].   

 
Table1:  Comparison of Compression Algorithms by Google 

 
 
Snappy: Snappy [8] is released by Google under the BSD 

License, provides the same compression used by Bigtable 
(Zippy). It behaves perfectly to provide high speeds and 
reasonable compression. The code is written in C++. Its aim 
is not to provide maximum compression, or compatibility 
with any other compression library; instead, it aims at 
providing very high speeds and reasonable compression. 
Snappy encoding is not bit-oriented, but byte-oriented. The 
first bytes of the stream are the length of uncompressed 
data, stored as a little-endian variant, which allows for 
variable-length encoding. The lower seven bits of each byte 
are used for data. 

GZIP: The GZIP [9] compression algorithm compresses better 
than Snappy or LZO, but is slower in comparison. It comes 
with an additional savings in storage space. It comes 
shipped with HBase. GZIP is based on the DEFLATE 
algorithm, which is a combination of LZ77and Huffman 
coding. GZIP compression works by finding similar strings 
within a text file, and replacing those strings temporarily to 
make the overall file size smaller. 

4 IMPLEMETATION 
 HBase runs on the top of Hadoop and uses HDFS to store all 
files. These files are divided into blocks when stored within 
HDFS. Compression analysis journey was started with instal-
lation and configuration of Hadoop-1.0.4 and HBase-0.94.5 in 
pseudo distributed mode on a single Linux box-64-bit 
(Kubuntu) with Intel corei5 processor, 3.84GB of RAM and 
105GB disk space. After configuring Hadoop, HBase configu-
ration is done so that HBase and Hadoop files system can be 
combined to store data. For configuring there is need to add 
some properties values in HBase-site.xml file in its conf direc-
tory. Initially there was only one table 'retail' with a column 
family 'info' and created and defined using HBase shell as fol-
lows:  
HBase(main):001:0> create 'retail, 'info' 
At this time compression is not enabled for retail table and 
table is empty. A table in a HBase must have at least one col-
umn family. 
 
4.1 Loading Bulk Data in HBase Table 
For loading the bulk data from the file retail.txt stored in 
HDFS, Hadoop Map/Reduce framework is used. File size is 
6.5GB. HBase tables are schema free, that is, many number of 
columns can be added or removed later on after the creation of 
table. Fig2. shows schema of the all tables. 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                               543 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org 

 
Fig 2: HBase Table Schema 

 
4.2 Map Reduce Job for Bulk Data Loading 
MapReduce process shows how the data is processed. The 
first thing that happens is the split, which is responsible for 
dividing the input data into reasonably sized chunks that are 
then processed by one server at a time. The MapReduce 
framework take care of all the underlying details regarding 
parallelization, data distribution and load balancing while the 
user is concerned only about the local computations executed 
on every machine. These computations are divided into two 
categories: the map and the reduce computations. Following is 
the pseudo code of Map/Reduce job for loading bulk data. It is 
implemented in JAVA using eclipse IDE. It contains mainly 
three classes - Mapper class, Reducer class and finally the 
Driver class. Row key design in HBase tables is important as it 
is the only means to access value in the cell. In this program 
row key is taken as the combination of three values, two col-
umns namely product and country and a counter to make it 
more distinct as it act as the Primary key to access the values 
in cells.  

Input: Texts file from HDFS 
Main class name: public class RetailDataLoader { 
Global variable: public static enum KEY_COUNTER; 
Mapper class: public static class RetailMapper extends 

provided Hadoop class 
Parameter passed: <record InputFormat, record 

OutputFormat> { 
Return:  key / value pair  
Local variables: String line, String array parts, String fHalf, 

String sHalf, String k, Text outputKey; 
Map  method: public void map 
Parameters passed: (key / value pair) { 

 Body: creates key / value pair 
  k = fHalf + "." + sHalf;  
  value = line; 
  Return: OutputFormat key / value pair 
 }}} 
Reducer class: public static class RetailReducer extends 

TableReducer 
Parameter passed: <output of Mapper method> { 
Local variable: byte[] rowKey; 

     Reduce method: public void reduce { 
     Parameters passed: (key / value pair) 
      Body:  
 Local variable: Text v 

          for: each v in value { 
          increment global counter variable; 
          call method  getRowKey; 
                    store rowKey in the given table; 
          get data for columns; 
           store data in the columns in given table; 
  }}} 
Driver class: public static void main(String[] args) throws 

IOException { 
Body:  
 set Configuration; 
 add resources; 
 defines path of the text file from hdfs; 
 define job with required classes; 
 set file input format; 
 set jar by class; 
 set Mapper class; 
 set Reducer class; 
 set Map OutputKey class; 
 set Map OutputValue class; 
 set InputFormat class; 

 configure identity reducer to store the parsed data; 
getRowKey: public static byte[] getRowKey { 
Parameters passed: <mapper key> 
Body: 

Local Variables: String keys, String countryName 
set rowKey value; 

 Return: rowKey 
      }} 

 
To confirm and see the loaded data scan command (written 
below) using HBase shell is used. 
 HBase(main):003:0> scan 'retail' 
Snippet of the output of table scan is shown below. This table 
has 80672928 rows and nine columns.  
 
Output: 
\x00\x00\x00\x00\x00\x00\x00\x01.Country-
1.\x00\x00\x00\x00\x0   
column=info:product, timestamp=1312821497945, value=3 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                               544 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org 

column=info:productVariant, timestamp=1312821497945, val-
ue=4 
column=info:Country, timestamp=1312821497945, val-
ue=Country-6 
column=info:State, timestamp=1312821497945, value=State-10 
column=info:Store, timestamp=1312821497945, value=Store-34 
column=info:Category, timestamp=1312821497945, val-
ue=Category-180 
column=info:Brand, timestamp=1312821497945, value=Brand-
23 
column=info:ListPrice, timestamp=1312821497945, value=260 
column=info:SalePrice, timestamp=1312821497945, value=230 
. 
. 
. 
80672928 row(s) 
 
Next section explains the installation of the compression 
codecs for HBase, mainly Snappy and LZO. 
 
4.3 Activating Compression Codecs in HBase 
Activating compression Snappy and LZO codecs in HBase it is 
required to build hadoop-lzo and native libraries and hadoop-
snappy and native libraries from the source and configuring 
Hadoop and HBase to use these libraries. These were installed 
under the $HBase_HOME/lib and $HBase_HOME/lib/native 
directories, respectively. HBase also supports GZIP codec and 
that is shipped with it does not needs to be installed. This 
section outlines the steps needed to activate LZO/Snappy 
compression in HBase. 

• Installation of Apache Ant, Maven, libtoolize. 
• Get the latest hadoop-lzo/ hadoop-snappy. 
• Build hadoop-lzo / hadoop-snappy from source. 
• Build the native and Java hadoop-lzo/ hadoop-snappy 

libraries from source, depending on OS. 
• This step creates the hadoop-lzo/ hadoop-snappy 

build/native directory and the hadoop-lzo / build/ 
hadoop-lzo-1.0.4.jar file. 

• Copy the built libraries to the $home/priyanka/hbase-
0.94.5/lib and $home/priyanka/hbase-0.94.5/lib/native 
directories on master node. 

• Add the configuration of hbase.regionserver.codecs to 
hbase-site.xml file. 

Once the installation is complete, verification is done by using 
compression test tool mechanism available in HBase. HBase 
ships with a tool, given below, to test whether compression is 
set up properly.  
Hbase class org.apache.hadoop.HBase.util.CompressionTest 
\  hdfs://localhost:9000/user/priyanka/test.txt snappy 
The tool reports SUCCESS, and therefore confirms that this 
compression type for a column family definition can be used. 
For using compression algorithms, it is to be added at the time 
of column family creation in table definition.  In next step the 

defining of three new tables named 'ret_LZO', 'ret_snappy' 
and 'ret_gz' using HBase shell is done. For example: 
Hbase(main):001:0> create 'ret_LZO', { FAMILY => 'info', 
COMPRESSION ═> 'LZO'}  
By adding compression support in HBase table at column 
family level, HBase StoreFiles (HFiles) can now use 
compression on blocks as they are written. For performing 
compression HBase uses the native library like of LZO and 
Snappy. The native library is loaded by HBase via the hadoop-
lzo / hadoop-snappy library.  
Next section implements queries on these tables, on the basis 
of which performance evaluation of compression codecs is 
accomplished. 
 
4.4 Query Execution 
To further evaluate the effect of compression and improved 
performance in terms of CPU and network utilization, disk 
space and memory used, query implementation is done. 
Compressed tables and the uncompressed one are queried for 
the analysis purpose. Queries have been implemented in JA-
VA and using advanced HBase API mainly filters. Eclipse IDE 
is used to compile and run these queries. Following is the 
pseudo code representation of two queries followed by output 
snapshots. Only two queries are shown here. 

Query 1. To find countries where the given product has been 
sold. 

Class Definition: public class FirstQuery { 
Body:  
Main method: public static void main(String[] args) { 
               create the required configuration; 

  instantiate new table reference; 
    call firstQuery method; } 
 firstQuery method: private static void firstQuery { 
 Parameter passed: HTable client; 
 Local variable: long productID, Set<String> set; 
 Body: 
  create RowFilter; 
  create an empty Scan instance; 
  pass filter to scan; 
  get a scanner to iterate over the rows; 
                         for (Result r : resultScanner) { 
   add countries name in object set;  

             } 
  for (String s : set) { 
   print countries; 

            close resultScanner; } 
  }} 

 
Output:              

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                               545 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org 

                        
 
Query 2. To find total number of given category products 
sold in given store. 

Class Definition: public class FifthQuery { 
Body:  
Main method: public static void main(String[] args) { 
              create 

the 

required configuration; 
    instantiate new table reference; 
    call fifthQuery method; } 
 fifthQuery method: private static void fifthQuery { 
 Parameter passed: HTable client; 
        Local variable: String store, String category, int count; 
 Body: 
  create filter ArrayList; 
  create ValueFilter; 
  create an empty Scan instance; 
  pass filter Arraylist to scan; 
  get a scanner to iterate over the rows; 
  for (Result r : resultScanner) { 

increment count;                        
print count of products sold in given store;  } 

  close resultScanner; 
 }}                 
        
Output:    

                            

5 RESULTS AND ANALYSIS 
Effect of using compression in HBase can be seen directly from 
the HBase master UI. Table 2 shows number of online regions 
in compressed tables is less than the uncompressed one. For 
snappy and LZO number of regions are same that means in 
both cases the size of compressed table is almost same. For 
GZIP number of the regions is the least which means it pro-
vides highest compression ratio among all three. 

 
Table 2: Count of Regions 

Table Name No. of Regions 
ret_lzo 5 

ret_snappy 5 
ret_gz 4 
retail 7 

 
Following command was used to check the length/size (bytes) 
of these tables and it was found that there is huge difference 
between the lengths of uncompressed table and compressed 
tables.  
priyanka@priyanka:~/hadoop-1.0.4$ ./bin/hadoop dfs -dus 
/HBase/table 
Table 3 gives the percentage of reduced data size (in bytes). 
Here again clearly GZIP is the winner as GZIP mainly aims at 
providing better compression ratios as stated earlier. Here too 
it was found performance of snappy and LZO is nearly equal.  

 
Table 3: Space usage of Tables 

 
 
 
 
 
 
 

Fig3. graphically represents the same thing but in comparison 
with the size of retail table. This analysis proves that GZIP can 
perform better in those database applications where storage 
requirements is the main concern. 
 

 
Fig 3: Comparison of Table Size 

Another important area where effect of compression can be 
seen is in the performance improvement of queries execution. 
Results shows that execution time required for executing 
queries, when using compression on table is less than the 
execution time needed for executing queries on uncompressed 
table. For this performance evaluation 7-8 queries were 
executed, here only results of two queries are shown. 

Table Names Reduced Data Size (%) 

ret_lzo 69 

ret_snappy 68 

ret_gz 80 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                               546 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org 

Table 4 also shows the queries execution speed up by using 
compression algorithms on tables in comparison with the 
uncompressed one only for prior mentioned two queries. 
 

Table 4: Execution time Speed up 

 
 
Further, analysis of compression codecs used on HBase tables 
shows that snappy and LZO are much faster than GZIP. Fig4. 
presents the comparison between executions speeds gain 
among the three codecs used in queries execution. Results are 
largely in favor of snappy. It shows snappy outperforms other 
two and is faster in executing of queries. It shows that in some 
queries GZIP execution time is even more than the execution 
time for uncompressed table retail. This shows that GZIP 
decompression rate is not speedy.  
 

 
Fig 4: Comparsion of Query Execution Speed using Com-

pression 
 

To analyze the effect of compression in terms of important 
resources like memory used, CPU utilization, network utiliza-
tion and disk space used during the execution of queries on 
Hadoop and HBase, installation of Ganglia Monitoring System 
is required. Table 5 shows the values of all metrics captured 
for query 1 and 2 against each table enabled with compression. 

 
Fig 5: HBase Cluster Overview during Queries Execution 

 
CPU Utilization: Efficient CPU resource usage is very 
important in applications which are I/O intensive and the 
compression ratio achieved is minimal. CPU usage in 
percentage is gathered for all queries executed on all tables.  

 

Table 5. Comparsion of Memory, Network and CPU utiliza-
tion by Compressed Tables during Query Execution (1&2) 
Query 

Number 
Table 
Name 

Memory 
Used 
(KB) 

Network 
Utilization 

In/out (B/sec) 

CPU 
Utilization 

(%) 

1 ret_lzo 786992 9.5/108 29.5 

1 ret_snap
py 

760234 7.2/98 31 

1 ret_gz 796932 8/118 32 

2 ret_lzo 730544 8/50 30.5 

2 ret_snap
py 

702564 8/48 26 

2 ret_gz 810980 8.5/94 31 
 
Investment of CPU cycles in decompressing the data read 
from disk is required. Snappy and LZO invests less CPU 
cycles means that their decompression speed is faster than 
GZIP. Fig6. depicts that Snappy and LZO are not CPU 
intensive whereas GZIP is.   

 

Fig 6: Comparison of CPU utilization 

Network Utilization: Compressed data read from disk needs 
to be transferred over the network, compression ratio directly 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013                                                               547 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org 

affects the number of roundtrips required to read compressed 
data over the wire. Compression on the sending end and 
decompression on the receiving end, in snappy and LZO is a 
pure win. Snappy and LZO uses the network bandwidth 
efficiently. Fig7. shows that Snappy and LZO are great for 
sending or receiving large pieces of data over the network. 

 
Fig7. Comparison Result of Network used 

 
Memory Usage: How implementing compression helps in 
reducing memory usage would be of great help. Fig8. shows 
that Snappy and LZO memory usage values came out less 
than in the case of GZIP.  Here, LZO even outperforms snappy 
by slight amount. 
 
 

 
Fig 8: Comaprison of Memory Utilization 

 
Next section presents the summary and conclusion of this pa-
per along with future scope. 
 
6   CONCLUSION AND FUTURE SCOPE 
For large clusters and large jobs, compression can lead to sub-
stantial benefits. Compression helps in improving overall per-
formance of the NoSQL column oriented data-stores by opti-
mally saving memory used and network bandwidth. Follow-
ing conclusions are drawn from this work can be summarized 

as follows:  
Compression in HBase improves query execution speed. 
Among the three taken codecs, Snappy performs best in re-
ducing time taken by queries to execute. For human readable 
text, Snappy and LZO are faster in compress and decompress 
time but less efficient in terms of compression ratio. GZIP 
gives higher compression ratios (7% higher than snappy) but 
is not so fast. Snappy and LZO can perform well in applica-
tions that are I/O intensive whereas GZIP can be used in the 
application that starves on disk capacity. Compression in 
HBase cause low usage of RAM/ Memory for no additional 
cost. Since Snappy and LZO have fast decompression speed, 
thus not taking too many CPU cycles. Snappy and LZO have 
low CPU usage whereas GZIP has high value of CPU utiliza-
tion. Compressed data read from disk needs to be transferred 
over the network, compression ratio directly affects the num-
ber of roundtrips required to read compressed data over the 
wire. Snappy and LZO efficiently use network bandwidth 
since they are fast than GZIP.  
 
As in this work effect of compression has been shown by us-
ing human readable text data; in future it can be extended to 
other types of data like images. A deep research can be done 
on read and write patterns of HBase and design of a new cus-
tom compression codec from the scratch to get better perfor-
mance than the existing codecs. Query executer can be built 
for HBase which can directly execute queries on compressed 
data, thus saving I/O requirements spend in decompression 
of data before executing queries.  

REFERENCES 
[1] Lars George, HBase: The Definitive Guide. CA: O'Reilly 

Media, 2011. 
[2] Orenstein, Gary. "What the Heck Are You Actually Using 

NoSQL for?" High Scalability.com Web. Dec. 6, 2010.  
http://highscalability.com/blog/2010/12/6/what-the-heck-are-
you-actually-using-nosql-for.html, 

[3] Daniel J. Abadi, Samuel R. Madden, and Miguel C. 
Ferreira, “Integrating Compression and Execution in 
Column-Oriented Database systems,” in Proc. of  ACM 
SIGMOD International Conf. on Management of Data, pp. 
671-682, June 27-29, 2006. 

[4]     "HBase," Web. July, 2013   http://hbase.apache.org/html  
[5]     "Hypertable,"  Web. July, 2013 http://hypertable.org/html  
[6]     “LZO.”Web July , 2013.  

http://www.oberhumer.com/opensource/lzo/html   
[7]     Yifeng Jiang, HBase Cookbook Administration. Birmingham, 

UK: PACKT   Publishing, 2012. 
[8]     “Snappy.” Web. July, 2013. http://code.google.com/p/hadoop-

snappy/html  
[9]     “Gzip.” Wikipedia, the free encyclopedia, Web. July, 2013 

   http://en.wikipedia.org/wiki/Gzip/html   

 

IJSER

http://www.ijser.org/
http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-for.html
http://highscalability.com/blog/2010/12/6/what-the-heck-are-you-actually-using-nosql-for.html
http://hbase.apache.org/html
http://hypertable.org/html
http://www.oberhumer.com/opensource/lzo/html
http://code.google.com/p/hadoop-snappy/html
http://code.google.com/p/hadoop-snappy/html
http://en.wikipedia.org/wiki/Gzip/html

	1 Introduction
	2   HBase- Data Model
	3 Why Compression and Compression Codecs
	3.2 Compression in HBase
	3.2 Compression Codecs in HBase

	4 Implemetation
	4.1 Loading Bulk Data in HBase Table
	4.2 Map Reduce Job for Bulk Data Loading
	4.3 Activating Compression Codecs in HBase
	4.4 Query Execution

	5 Results and Analysis
	6   Conclusion and Future Scope
	References



